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are specialized for a single task, and cannot 
adapt their body to accomplish additional 
tasks after manufacture. Moreover, 
biological bodies are often highly regen-
erative, and able to repair and reconfigure 
their large-scale architecture in the face 
of significant damage or radical changes 
to their components.[3] For example, sala-
manders regenerate amputated limbs,[4] 
and fragments cut from arbitrary portions 
of planaria flatworms can rebuild (and 
rescale) their bodies to recover a full, cor-
rect anatomy.[3] Remarkably, many of these 
systems are able to retain information, 
such as learned memories, despite drastic 
reconfiguration or total replacement of their 
brains.[5] In these integrated living systems, 
intelligence, memory, learning, behavior, 
and body structure are all intertwined and 

emerge from the multiscale dynamics of the same robust and 
highly fault-tolerant medium.

Evolution did not result in hard-coded body plans purely deter-
mined by genetic factors, but rather produced diverse examples of 
intelligent self-modifying systems which adapt to numerous extra-
genomic influences.[6] In this way, biology serves as an important 
proof-of-principle, and design challenge, for artificial intelligence and 
shape changing robots. Despite having access to this extensive set of 
model systems, the realization of general-purpose, adaptive robots 
has remained elusive. Researchers have proposed modular robots 
that can be attached to each other to expand functionality,[7] passively 
conforming universal grippers,[8] reconfigurable robotic skins,[9] 
self-assembling robot swarms,[10] gait-switching mechanisms[11] and 
controllers,[12,13] and algorithms that quickly re-adapt to multiple 
distinct tasks.[14] Such approaches succeed at adaptation but operate 
under the assumption that the robot’s body is only reconfigured or 
reshaped due to external forces, and do not explore the possibility of 
synthetic machines that actively grow, regenerate, deform, or other-
wise change the resting shape of their constituent components.

With the introduction of a conformable gripper by Hirose 
in 1978,[15] followed by continuum robot arms,[16] silicone 
grippers,[17] and variable stiffness actuators,[18] robots that can 
adapt to real-world environments by changing their shape are 
becoming closer to reality. In particular, the idea of passively 
conforming around objects during grasping has been quite suc-
cessful.[17,19,20] Soft robots have shown potential in other appli-
cations, including human–robot interaction and exploration, 
as reviewed by Kim et al.,[21] Rus et  al.,[22] and others.[23,24] For 
a comprehensive review of the role of deformation in single-
function soft robots, the reader is referred to Wang et al.[25]

One of the key differentiators between biological and artificial systems is 
the dynamic plasticity of living tissues, enabling adaptation to different 
environmental conditions, tasks, or damage by reconfiguring physical 
structure and behavioral control policies. Lack of dynamic plasticity is a 
significant limitation for artificial systems that must robustly operate in the 
natural world. Recently, researchers have begun to leverage insights from 
regenerating and metamorphosing organisms, designing robots capable of 
editing their own structure to more efficiently perform tasks under changing 
demands and creating new algorithms to control these changing anatomies. 
Here, an overview of the literature related to robots that change shape to 
enhance and expand their functionality is presented. Related grand challenges, 
including shape sensing, finding, and changing, which rely on innovations 
in multifunctional materials, distributed actuation and sensing, and somatic 
control to enable next-generation shape changing robots are also discussed.

1. Introduction

Biological organisms are able to adjust their body structure, 
stiffness, and behavior toward a complex anatomy that accom-
modates a variety of environmental demands and external pertur-
bations. For example, octopuses have been observed to squeeze 
through apertures that are much smaller than their body, hydro-
static caterpillars use peristaltic shape change to locomote across 
numerous environments,[1] and moth larvae have been observed 
to curl up to roll away from predators.[2] In contrast, robots often 
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Several recent works have begun to explore the idea of using 
the resting (non-actuated) shape of a robot’s body as a way to 
expand the robot’s functionality. For example, one robot could 
switch between spherical and cylindrical shapes for medical 
applications such as navigating the digestive system.[26,27] 
Another robot used origami techniques to change the diameter 
of its wheels to crawl over steps and under overhangs.[28] Nygaard 
et al. introduced a quadrupedal robot that adjusted its leg length 
to maximize locomotion speed across different surfaces.[29] In 
another recent study, robotic skins were attached to sculptable 
materials to create a robot that could change its shape to navi-
gate over an obstacle, rather than searching for a path around 
the obstacle.[30] Shape change can also be used to allow robots to 
recover from damage, sometimes outperforming adaptations in 
control policy.[31] In such examples, even relatively small changes 
in resting body shape proved useful, pointing toward future gen-
eral-purpose robots that leverage shape change to adapt to chal-
lenging real-world environments, as envisioned in Figure 1.

Despite the intense interest in the genesis and implications 
of shape for many fields, including medicine,[32] developmental 
biology,[33] swarm robotics,[34] and evolutionary robotics,[35] a 
consensus on how to quantify changes in shape has not been 
reached. Taha et al., for instance, reported that 20 distinct shape 
metrics are commonly used for 3D medical image segmenta-
tion.[32] For robots, one natural approach to measure shape 
change is calculating a virtual “elastic deformation energy,” 
which can be thought of as the energy required to stretch an 
elastic membrane from one shape to another.[36] However, for 
many robots, it is difficult to generate meshes or analytic expres-
sions to represent their shape in real time, and it is common 
in robotics to quantify shape-estimation errors using a small 
subset of surface points and evaluating root-mean-squared 
error (RMSE) or mean absolute error.[37–42] Several other dis-
crete measurements of shape similarity have been proposed in 
the robotics community, including Procrustes analysis (a modi-
fication of RMSE that is invariant to rotation, scaling, and trans-
lation errors),[40] a “shape index” ( Perimeter/ 2 areaS π( )= × ,  
which does not define a true metric),[10] and the Hausdorff 
distance.[43]

Here, we will use the term “shape changing robots” to refer 
to robots that actively change their shape to adapt to their envi-
ronment or gain new functionalities. Although this defini-
tion does not divide robots into two mutually exclusive sets, it 
provides a framework to critically evaluate the state-of-the-art 
design paradigms and materials used in robotics. Through 
such introspection, and by observing biological mechanisms for 
shape change, we present several avenues where fundamental 
advances in materials science can enable the next generation 
of adaptive, shape changing robots, potentially one day rivaling 
biological systems that locally encode shape information to 
enable dynamic plasticity and regeneration.[33]

2. Biological Control of Shape

In organisms ranging from flatworms to mammals, hier-
archical processes regulate shape throughout development 
to ensure the organism can succeed in its ecological niche 
throughout its life cycle.[33] Each normal fertilized egg reliably 
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self-assembles a default 3D anatomical structure with very 
precise tolerances to a standard “target morphology” for that 
species. This process is remarkably robust—for example, mam-
malian embryos can be cut in half and each will result in a 
complete, normal body. In another example, land-based mam-
malian embryos thrive in an aqueous environment during fetal 
development, yet prior to birth grow skeletal structures more 
suitable for terrestrial locomotion.

Regenerative animals provide a unique example of how 
shape change can be used to recover from damage. When 
the limbs of a salamander are amputated, the cells are called 
upon to proliferate, perform morphogenesis, and stop when 
a correct salamander limb is complete.[4] How the cells are 
able to ascertain the current morphology of the much larger 
limb, and continually compare it to an intrinsic model of the 
target limb morphology to control individual cell behaviors 
toward self-limiting repair, is largely unknown.[44] However, 
it is clear that this somatic decision-making is an ancient, 
pre-neural example of intelligence and distributed compu-
tation in biological systems.[45–47] The tissue undergoing 
dynamic shape change is the same tissue that is processing 
information on-the-fly and making decisions about growth 
and form. Regenerative systems thus challenge engineers 
to implement a kind of integrated, robust computational 
medium that can continue to guide its own shape even as it 
is being deformed.

Recent progress in genomics and molecular biology have 
shed crucial light on the origin of biological hardware: genes 
encode signaling and structural components (proteins) at 
the sub-cellular level. However, the genome does not directly 
encode the target morphology, nor the algorithms sufficient 
to perform the kind of error correction seen during regenera-
tion.[6] The search for the biological software that runs on 
the genome-specified hardware has only begun, and two key 
features are now apparent. First, the software is biophysical in 
implementation. Bioelectric networks[48] enable cell collectives 
to store pattern memories, generate spontaneous symmetry-
breaking morphogenesis, recognize patterns, and integrate 
information across large distances in the body[49]—all occur-
ring outside the brain. Second, this embodied software strategy 
enables dynamic plasticity. For example, caterpillars that learn 

conditioned responses to a chemical in their environment 
retain that information as butterflies, despite complete brain 
reconstruction during metamorphosis.[50] Planaria retain their 
memories across total brain removal and regeneration.[51,52] 
Oviedo et  al. showed a technique for creating two-headed 
flatworms whose pieces continue to regenerate as two-headed 
forms in subsequent rounds of damage and regrowth without 
further treatment.[53] Tadpoles made to have eyes only on their 
tails can see quite well, despite this unprecedented change 
in sensory system architecture.[54] Next-generation robots 
can learn from these examples of basal cognition coupled to 
physical shape change,[45,55] perhaps embedding information-
processing tools that guide shape change directly into the 
robot’s body.[56,57]

3. Simulated Shape Changing Robots

Although numerous organisms successfully exploit shape 
change as a mechanism for adaptation and survival, it is 
unclear when and how robots should change their shape. To 
address these questions, it would be useful to evaluate a large 
number of diverse shape changing robots in different environ-
ments. However, manufacturing and deploying multiple robots 
can be expensive, time consuming, and even dangerous. Thus, 
simulations are often used to weed out undesirable designs 
before attempting to build them in reality.[43,58–60]

Yet, under realistic design conditions, simulations cannot 
exhaustively search the design space. Even using a small 
number of mechanical parts, the size of the design space is 
enormous. For example, in voxel-based robot simulators,[61,62] 
which use voxels as structural building blocks, there are  
4.5 × 108 unique ways to arrange 12 voxels to form a robot, and 
the design space (the number of possible designs) increases 
exponentially with each additional block.[63] As a result, evo-
lutionary[64–67] and learning[68,69] algorithms are usually 
employed to efficiently explore the vast space of possible robot  
designs.[70]

Directly incorporating biologically inspired mechanisms of 
shape change—for example, slowly extruding limbs during 
optimization rather than optimizing controllers only for the 

Figure 1. Next-generation shape changing soft robots will sense their environment and adjust their shape and behavior to accommodate environmental 
or terrain changes.
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final, legged form of the robot—has been shown to speed the 
evolution of robust, adaptive behavior in simulated robots.[71] 
In other cases, evolved robots have rediscovered natural strat-
egies on their own. For example, simulated soft robots evolved 
control policies that allowed them to squeeze their bodies 
through small apertures.[72] In another study, a simulated 
quadruped had all four of its legs simultaneously amputated; 
subsequently, evolution discovered that specific deformation 
to the resting shape could recover the robot’s function more 
effectively than re-adapting its control policy for its new body 
(Figure  2),[31] which is analogous to biological regeneration, 
although using different mechanisms (mechanical deforma-
tion versus regrowth).

Computational design can also discover novel ideas not 
known to occur in nature. For example, regeneration was not 
the only successful adaptation strategy discovered by evolu-
tion in the experiments reported by Kriegman et  al.[31] When 
the simulated robot was cut in half, evolution sometimes 
decreased the damaged robot’s surface area by compressing the 
remaining limbs, and other times it expanded the robot’s limbs, 
compressed its spine, and flipped over to recover an inverted 
locomotion strategy. Within and across nine different damage 
scenarios, the best shape-shifting strategies were diverse and 
creative: very few were a recapitulation of a familiar biological 
example. Thus, simulation can provide non-intuitive designs 
beyond those inspired by natural systems.

4. Shape Changing Robots

While biological and simulated systems alike indicate that 
even small shape adaptations can enable recovered or new 
functionalities, realizing shape changing robots in hardware 
presents its own set of unique challenges. However, we see 
immense potential in the convergence of multifunctional mate-
rials and soft robotics toward the goal of shape changing robots, 
and some promising examples already exist. Here, we focus 
on examples of physical robots that employ shape change to 
enhance, recover, or expand their capabilities.

Several robots have leveraged functional materials to change 
shape, to attain new gaits, and avoid obstacles, thereby solving 
problems that are traditionally in the realm of mechanics[73] 
and computer science.[74] For example, Shah et  al. proposed a 
rolling soft robot that uses a cable-driven robotic skin to sculpt 
an inner clay body into a different morphology (Figure 3a).[30] 
Initially cylindrical, the robot could roll on flat ground; when 
it encountered an obstacle in its path, the robot changed into 
a dumbbell shape to roll over the obstacle without changing its 
gait or path. While the robot was designed with 20 independent 
degrees of freedom (DoFs) for shape changing, it was found 
that only a single DoF was necessary to perform the required 
obstacle avoidance. In another example, a caterpillar-inspired 
robot called GoQBot changed its shape to switch between con-
trolled crawling and ballistic rolling gaits (Figure 3c).[75] Using 
shape memory alloy (SMA) coils to deform its silicone body in 
small arches, the robot could crawl forward. Upon rapid activa-
tion of the SMA actuators, the robot curled into a ball shape 
and initiated rolling in under 250 ms. Such a maneuver could 
be useful for escaping predation, rolling downhill in an energy-
efficient manner, and increasing the robot’s effective dimen-
sions to enable it to easily overcome obstacles larger than its 
flattened shape. In yet another example, Lee et  al. proposed a 
robot that folds fabric and sheets of poly(ethylene terephthalate) 
(PET) to enlarge its wheels and climb onto step-like platforms 
(Figure  3d).[28] The robot was then able to collapse its wheels 
to roll under narrow gaps, allowing the robot to operate over a 
wide range of terrains and environmental conditions. Despite 
being primarily made of flexible materials, the robot was able to 
use cleverly designed folding patterns to support a payload 400× 
the weight of its wheels. To adapt to changing flow conditions 
underwater, Ishida et  al. developed a quadruped with a 4-DoF 
morphing top that could change its drag and lift coefficients to 
gain assistance from the current when the flow aligned with its 
direction of motion, and reduce drag when walking against the 
flow.[76] Similar to the rest of the robots in this category, only a 
few DoF for shape change were required to allow these robots 
to continue operation, without searching for complex control 
strategies to deal with changes in its environment.

Other soft robots have used shape change to switch between 
locomotion on land, in air, and/or in water. Baines et  al. 
recently demonstrated a life-size turtle- and tortoise-inspired 
morphing limb that could change between flipper and leg 
shapes, as a step toward amphibious robots which can accom-
plish both aquatic and terrestrial locomotion (Figure  3f).[77,78] 
The transformation from flipper to leg occurred via coupled 
variable stiffness and actuation materials distributed along the 
length of the morphing limb. Initially in a flipper shape, fluidic 

Figure 2. Simulations can automatically generate complex shape changing 
robots, including ones that recover from damage through shape change. 
The quadrupedal robot shown here discovered that, after being damaged, 
it was more advantageous to change its shape than adapt its control 
policy. Adapted with permission.[31] Copyright 2019, Sam Kriegman.
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actuators inflated, causing a change in limb cross-sectional 
geometry to transition to the load-bearing leg shape. The vari-
able stiffness material, a thermoset polymer with embedded 
heaters, controllably softened and stiffened the limb to lock 
and unlock the geometries. Hawkes et  al. designed an ori-
gami robot that could fold between shapes resembling a boat 

and a plane (Figure  3e).[79] Although these structures were 
not demonstrated moving through air or water, locomotion 
could potentially be achieved through integration of additional 
actuators. For example, other lightweight origami robots[80] 
attained controlled flight resembling the locomotion paths of 
insects.[81,82]

Figure 3. Shape changing soft robots. a) Cable-driven clay morphing robot changing shape to avoid an obstacle. Adapted with permission.[30] Copyright 
2019, IEEE. b) Cylindrical rolling robot flattens to switch from a rolling gait to a crawling gait. Reproduced with permission.[87] Copyright 2020, The 
Authors. c) Caterpillar robot changing from inching to rolling. Adapted with permission.[75] Copyright 2011, IOP Publishing. d) Variable diameter origami 
wheel. Adapted with permission.[28] Copyright 2017, Mary Ann Liebert, Inc. e) Programmable origami robot transitioning between a “boat” and a “plane” 
shape. Adapted with permission.[79] Copyright 2010, National Academy of Sciences. f) Variable stiffness morphing limb for an amphibious legged robot. 
Adapted with permission.[78] Copyright 2020, IOP Publishing. g) Magnetically actuated soft capsule for drug delivery. Adapted with permission.[26] 
Copyright 2012, IEEE. h) Tissue engineered robot with light-activated morphing wings. Reproduced with permission.[83] Copyright 2019, Wiley-VCH.
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Shape change has also been used in human-centered appli-
cations. Yim and Sitti proposed a millimeter-scale, magneti-
cally actuated capsule that can locomote and switch between a 
spherical and cylindrical shape (Figure  3g).[26,27] Although the 
robot could locomote in each shape, the robot used shape change 
to improve the precise positioning of its endpoints, and deliver 
simulated drugs inside of a synthetic stomach model. Another 
proposed millimeter-scale robot had oscillating cardiac muscle 
cells attached to the back of airplane-shaped “wings” to propel it 
across the surface of the liquid medium in a cell culture, simu-
lating applications in targeted drug delivery in the human body 
(Figure  3h).[83] When the “wings” absorbed near-infrared radia-
tion, heat spread to their attached temperature-sensitive hydrogel 
actuators to induce curling. The curled shape had a higher 
bending stiffness that prevented further swimming motions, 
allowing the robot to stop directly above a target location and 
release anticancer drugs onto cancer cells. Finally, researchers 
have demonstrated that shape change can alter our perception of 
robots during human–robot interactions,[84–86] thereby improving 
these exchanges and increasing the operational value of the robot.

Researchers have also explored the potential for auto-
matically designing shape changing robots in simulation 
and transferring successful designs to reality. Kriegman et  al. 
developed a scalable method to create physical shape changing 
voxel-based modular robots, and successfully transferred two 
strategies of shape change discovered in simulation to reality; 
however, functionality (locomotion) did not transfer.[31] Later, 
locomotion was transferred from simulation to reality using 
an improved version of the same system (silicone-based pneu-
matic voxels), however these locomoting physical robots did not 
change shape.[43] Another simulated shape changing robot used 
an inflatable core to transition between a cylindrical shape and 
a flattened sheet-like shape to adapt its locomotion to different 
environments.[87] Initially a rolling cylinder on flat terrain, the 
robot changed to the flattened shape with an inchworm gait 
to maintain efficient locomotion up an incline. This simulated 
robot design was successfully transferred to reality, thereby real-
izing a physical robot that utilizes shape change to gain access 
to additional environments (Figure 3b).

5. Grand Challenges

The examples given herein highlight how shape change 
can allow a robot to enhance or expand its functionality via 

adaptation or regeneration. However, to develop robots rivaling 
biological systems, several challenges need to be addressed. 
First, it is unclear how to optimally embed proprioception and 
intelligence into such machines to enable robots to sense their 
shape. Additionally, to design robots for tasks more complicated 
than can be solved through human intuition, it is imperative to 
automate the design of shape changing robots. Finally, trans-
ferring highly functional designs to reality requires functional 
materials that can be integrated into systems that can attain 
precise control over shape.

5.1. Shape Sensing

Next-generation shape changing robots will rely on propriocep-
tion to determine when a target morphology has been reached, 
optimize shape change through intermediate shapes, and 
decouple deformation-driven task performance from global 
shape change. During regeneration, an organisms’ cells compare 
their body’s current state to the target morphology, although the 
exact mechanisms for these processes are poorly understood.[4] 
Techniques exist for measuring the deformation of fixed-shape 
robots, which generally rely on a comparison to the reference 
body shape at rest. For example, continuum manipulator mod-
eling relies upon assumptions about cross-sectional geometry,[88] 
while traditional robot kinematics assume each component is a 
rigid body.[89] However, if the reference body shape is changing, 
such an approach is no longer applicable. Thus, intrinsically 
(i.e., without external components) measuring the state of shape 
changing robots largely remains an unsolved problem.[90]

There have been several attempts to detect the shape of non-
stretchable robot “skins” (Figure 4). Many studies treat the skin 
as an inextensible sheet of rigid elements joined by known 
axes of rotation (Figure  4, left). Hoshi and Shinoda arranged  
24 printed circuit boards (PCBs) into a mesh and estimated 
inter-PCB rotations using accelerometers and magnetometers.[39]  
Building upon this work, Mittendorfer et  al. developed rigid 
sensorized PCBs that could be connected and wrapped around 
robots.[40] Hermanis et al. then used a grid-like arrangement of 
accelerometers and gravitometers on a flexible fabric sheet.[37] 
In these studies, no attempt was made to estimate the true 
shape of the underlying object; the objective was to measure 
the location of the PCBs’ centers with high precision.

Other proposed approaches leveraged techniques from 
machine learning and statistics to process sensor signals and 

Figure 4. Sheets that can sense their 3D shape. Recent advances in shape-sensing e-skins use several sensing modalities, ranging from discrete 
to continuous approaches. Left to right: hexagonal PCBs with integrated accelerometers, sensor network with accelerometers and magnetometers, 
optical fibers in silicone foam, fiber Bragg gratings in silicone. Image for Hexagonal PCBs: Adapted with permission.[40] Copyright 2012, IEEE. Image for 
sensor network: Reproduced with permission.[37] Copyright 2012, IEEE. Image for opical fiber: Adapted with permission.[91] Copyright 2018, The Authors, 
published by American Association for the Advancement of Science. Image for fiber Bragg grating: Adapted with permission.[41] Copyright 2019, IEEE.
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extract a continuous estimate of the shape of the skins (Figure 4, 
right). Such an approach is more general, and could potentially 
lead to more accurate estimations of the state of shape changing 
soft robots. Rendl et  al. used data from 16 piezoelectric bend 
sensors, which experience a potential difference on their elec-
trodes during bending, on a PET sheet to estimate the sheet’s 
shape as a combination of several shape primitives.[38] Another 
study used neural networks to estimate the shape of a silicone 
plate using inextensible optical fiber Bragg gratings strain sen-
sors (coated with ORMOCER inorganic–organic hybrid poly-
mers).[41] Van Meerbeek et  al. embedded an array of optical 
fibers inside an open-celled elastomeric foam and used their 
output to predict the mode of deformation and angle of defor-
mation of the foam, using machine learning algorithms.[91]

Several challenges emerge from inspection of these works. 
Some shortcomings arise from material limitations: none of 
the proposed approaches could accommodate or detect in-plane 
strains. There are solutions to making stretchable strain sen-
sors[92–94] and stretchable circuits,[95,96] but is is unclear how to 
transfer these advances to sense a variety of dissimilar shapes. 
For instance, how many sensors, and what type of sensors, are 
needed to detect the shape of each robot in Figure 3? Biological 
organisms, such as humans, distribute multimodal sensing 
capabilities across their skin and at multiple depths,[97] and 
throughout their musculoskeletal system.[98] The efficiency of 
this approach is unclear, as evolution selects for survival, and 
biological constraints do not map perfectly to the constraints 
and cost–benefit relationships relevant in robotics. Additionally, 
how can sensors be developed to decouple large in-plane strains 
from transverse strain (pressure), at sufficiently high resolu-
tion? Some progress has been made toward independent multi-
modal sensing for robots with a fixed resting shape,[99] but these 
methods have yet to be tested in shape changing robots. Finally, 
the proprioceptive sensors used in shape changing robots should 
be simultaneously robust to repeated applications of external 
strain, able to withstand undesired local shear forces, and easy 
to manufacture at the densities needed to detect the complicated 
deformations experienced during typical operations.

Other challenges are algorithmic: each proposed sensing 
approach—broadly, what we classify as discrete versus contin-
uous approaches—has drawbacks. The discrete method insuf-
ficiently handles continuously deformable surfaces, while the 
data-driven continuous approach only operates under limited 
deformation conditions. Solutions in this regard could involve 
applying techniques from differential geometry to fuse rotation 
and strain data to generate smooth surface estimates.[100–103] In 
the work by Stanko et  al.,[100] a single algorithm was used to 
estimate the shape of objects as dissimilar as a mushroom, a 
chair, and a guitar. The only required input was distance esti-
mates between successive orientation measurements. When 
paired with stretchable strain sensors[92–94] and stretchable 
circuits,[95,96] such algorithms could provide solutions to the 
overall problem of estimating the shape of a morphing robot.

5.2. Shape Finding

It is not obvious which shape a robot should assume in a given 
environment. While evolutionary robotics[35] may yield potential  

solutions, there are many unresolved fundamental questions 
in this area. For example: How will a robot know that its cur-
rent shape is no longer optimal, and it should search for a new 
shape and behavioral policy? How should robot shapes and 
behaviors be generated given only environmental inputs? Here, 
we explore how the state-of-the-art could be improved to create 
automated pipelines for finding effective shapes and designing 
sophisticated shape changing robots.

The application of evolutionary algorithms to simulated 
robots has begun to address the questions above, but only 
within empirical studies with one or two objectives for the 
robots to solve.[31,87,104] Further, higher-level and/or trans-
environmental tasks have been largely unexplored. Although 
evolved simulated robots have transitioned between terrestrial 
and aqueous environments,[64] no general understanding of 
how shape change can equip a machine to travel through air, 
water, or over land yet exists. Transitioning between shapes to 
solve widely varied tasks such as locomotion and grasping has 
not been considered, nor has changing shape in real time to 
avoid damage. To address these scenarios, the major challenges 
of catastrophic forgetting,[105] transferability,[106,107] simulation 
inaccuracies, system identification,[65] and the limited effi-
ciency and sub-optimality of search algorithms likely need to 
be considered.

Most existing studies on simulated morphing ignored the 
costs of shape change. Although shape change is sometimes 
more computationally efficient than searching for control poli-
cies,[31,87] in hardware implementations, there is an energetic 
cost associated with changing shape. Energy must be expended 
to power actuators (e.g., SMAs and shape memory poly-
mers,[108,109] dielectric elastomer actuators,[110] or various other 
soft actuators[111]) and materials may need to be replaced during 
regeneration or growth (e.g., via inflation,[31,112] additive manu-
facture,[113] etc.). Quantifying both the computational and ener-
getic costs of shape change will be important to the realization 
of shape changing robots that operate in the real world.

Additionally, it is challenging to specify algorithmic con-
straints that guarantee that the shape and behavior solutions 
found are physically realizable. While it is possible to stretch 
any two homeomorphic shapes into each other, generating 
designs which are robust to simulator inaccuracies requires 
sufficiently realistic constraints, and algorithms that can navi-
gate a constrained, likely highly non-convex, search space. 
Numerous methods to navigate the simulation–reality gap 
have been proposed, including injecting noise into the simula-
tions[106] and estimating an assumed transferability function.[107] 
Other approaches for crossing the simulation–reality gap in soft 
robotics include reducing the robot to quasi-static motions[60] 
and simplifying the search space.[104] However, these simplifica-
tions dramatically reduce the range of capabilities that can be 
evolved and limit the scope of tasks that can be completed.

5.3. Shape Changing

Most morphing robots in the literature have been designed to 
attain a limited set of shapes as a proof-of-concept. Increasing 
the controllable degrees of freedom should generally improve 
the shape changing abilities of robots (Figure  5), but such 
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complexity comes with trade-offs and limitations. For example, 
origami robots[80] are typically designed to attain a limited set of 
shapes by folding at discrete locations (Figure 5, left).[28] Addi-
tional shapes could be achieved by adding or utilizing additional 
folds, but would increase the system’s complexity. The clay-
sculpting robotic skins[30] were designed to stretch with their 
surface to attain a continuous range of shapes; however, they 
were restricted to shapes with circular cross-sections (Figure 5, 
second from left). Adding additional cables to this design, more 
complicated profiles could be attained, but the robot could not 
attain, for example, a quadrupedal shape. The field needs fun-
damentally new approaches to shape change, including novel 
actuators and growth mechanisms, paired with complementary 
technologies to control surface strain.

Typically, a robot’s components are optimally placed for its 
morphology and target function. Yet, for a shape changing robot, 
optimal component placement will differ between morphologies. 
One solution to this problem is to increase the sensor and actu-
ator component density throughout the robot to increase its con-
trollable degrees of freedom. Potential ways to increase sensor 
and actuator density include multifunctional materials,[115–117] 
3D circuits,[95] skins with tightly integrated sensing and actua-
tion,[118] and multimodal sensing arrays.[97] However, numerous 
issues arise when increasing component density, including 
cross-talk, data processing, and complicated wiring schemes.[90] 
Communication protocols for large numbers of sensors or actu-
ators is another challenge. Pneumatic robots, for example, usu-
ally require one three-state (inflate, hold, release) valve set per 
actuator. Although pneumatic multiplexing has been shown to 
independently control large arrays of actuators,[119] multiplexers 
often result in a lower attainable actuation frequency.

To further expand the range of shapes that morphing robots 
can attain, additional actuation modes need to be introduced. 
Many shape changing robots utilize a single actuation mode, 
for example, tension,[30] volumetric expansion,[120] origami 
folding,[28] or bending.[83] In contrast, many shape changing 
organisms exploit multiple actuation modes. For example, the 
tentacles of cephalopods and many species’ tongues tightly 
integrate muscles with different orientations to achieve torsion, 
extension, and bending (Figure  5, second from right).[121,122] 
Integration of multiple actuation modes has largely been 
unexplored in the context of shape changing robots, and is a 

major unsolved challenge. Much can be learned from the field 
of microrobotics, where many robots have been built using 
stimuli-responsive polymers. Often these robots contain several 
actuation modes in addition to novel functionalities, such as 
camouflage.[123–126] Stimuli used in these micro-machines (mag-
netic fields,[123,125] chemical vapor,[124] light,[123] and solvent[126]) 
are usually less practical for larger-scale soft robots due to unfa-
vorable strength-to-weight ratios at larger length scales. With 
additional advances in fundamental materials science, imple-
mentation of stimuli-responsive polymers in large-scale robots 
may become viable.

Combining novel actuators, robot-simulators, and shape-
sensing technologies, robots could then utilize 3D “shape ser-
voing,” or closed-loop control of shape, to converge on a desired 
shape. In a 2D shape servoing application, an external vision 
system was paired with a robot arm to deform materials into 
a desired shape.[127] Building upon such extrinsic methods of 
shape control, it is conceivable that there will be optimal ways to 
use a robot’s actuators to smoothly shift between desired shapes. 
Insight into how to efficiently change shape could come from 
observing how sculptors smoothly sculpt clay between many 
highly dissimilar shapes.[30] Formalizing intuition and observa-
tion into computationally tractable shape-control loops could 
come from mechanics-based modeling and solving an inverse 
problem (i.e., calculating the required control sequence to attain 
a desired shape), or using data-driven reinforcement learning 
models to solve problems in an automated, closed-loop fashion.

As a robot undergoes large changes in shape, the surface 
stress can often approach the maximum available actuator 
stress and restrict further motion. To overcome these limi-
tations, one solution is to design robots that can reversibly 
undergo large deformations.[21,24] In contrast, many biological 
organisms experience large-scale, growth-driven shape change 
in response to numerous stimuli,[6,33] promoting long-term via-
bility of the organism (Figure 5, right). It is hypothesized that 
control of these factors could eventually lead to synthetic organ-
isms with programmable growth from varied initial states into 
target morphologies. Recent studies have proposed continuum 
robots that can grow along an arc-like path, using eversion[79] 
and tip-based additive manufacturing.[113] Progress is also being 
made in related fields, such as biohybrid robots,[128] expanding 
polymers[129] and hydrogels,[130] and simulating growing 

Figure 5. Additional controllable degrees of freedom will allow shape changing robots to approach the capabilities of biological systems. Current 
shape changing robots leverage relatively few controllable degrees of freedom (DoFs) to adapt, while some biological organisms leverage dozens of 
independent DoFs during normal motions, and growth allows organisms countless independent DoFs for changing their shape. Left to right: Morphing 
wheel; clay-sculpting morphing robot; voxel-based robots; octopus squeezing through a 1-inch diameter hole; tadpole-to-adult transition for a Microhyla 
fissipes frog. Image for morphing wheel: Adapted with permission.[28] Copyright 2017, Mary Ann Liebert, Inc. Image for morphing robots: Adapted 
with permission.[30] Copyright 2019, IEEE. Image for voxel-based robots: Adapted with permission.[31] Copyright 2019, Sam Kriegman. Octopus image: 
Reproduced with permission.[114] Copyright 2012, James B. Wood. Frog image: Reproduced under the terms of the CC-BY Creative Commons Attribution 
International License (https://creativecommons.org/licenses/by/4.0/).[142] Copyright 2019, The Authors, published by Frontiers.
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robots.[34] However, the load-bearing capabilities of many of 
these systems are low, and the remaining systems have limited 
controllability and ability to grow into unplanned geometries.

Variable modulus materials (reviewed by Manti et  al.[131]) 
can also potentially be used to control the deformation of sec-
tions during shape change, improve load-bearing capabili-
ties, and reduce energy requirements. For example, one robot 
selectively stiffened sections of its outer membrane to direct 
deformation when the inner chamber was inflated, producing 
locomotion (Figure  6a).[132] Granular jamming, used in this 
example, is stretchable but generally has low tensile modulus 
relative to other state-of-the-art variable stiffness materials, 
including conductive epoxies[133] and laminar jamming.[134,135] 
Unfortunately, these alternative materials do not perform well 
over tensile strains larger than a few percent. Recent advances 
such as cutting serpentine patterns in layer jamming sheets 
to allow stretch in one direction,[18] and low-melting-point-
alloy inclusions in a silicone matrix[136] (Figure  6b) have the 
potential to allow robots to control their stiffness while con-
trolling large strains during shape change. By leveraging vari-
able stiffness strategies such as layer jamming,[134,135] granular 
jamming,[8,18] or variable stiffness materials such as thermoset 
polymers,[133] robots could also increase their load-bearing 

capabilities in each attained shape, without requiring re-
adaptation of control strategy. For example, in the turtle- and 
tortoise-inspired morphing limb proposed by Baines et al., the 
robot could hold a flipper-like shape for hydrodynamically effi-
cient swimming, and switch to a load-bearing leg-like shape 
for walking using a softening/stiffening thermoset epoxy 
(Figure  6c).[77,78] Stiffening could also allow a robot to lock 
in its shape and disengage its morphing actuators, to reduce 
energy requirements. Researchers have shown this concept 
in various applications, including using a variable stiffness 
conductive epoxy composite to selectively soften and stiffen a 
gripper to maintain the position of its payload without addi-
tional energy input or control loops.[133] In other examples, 
researchers employed layer[137] and granular jamming[138] to 
selectively soften and stiffen continuum manipulators to hold 
a pose.

6. Conclusions and Outlook

We have surveyed the literature related to shape changing 
robots, from bioinspiration to simulation and hardware 
implementation. By actively morphing into different shapes, 

Figure 6. Variable modulus materials can allow robots to tune their morphing trajectories and selectively maintain desirable shapes. a) Granular jam-
ming allowed an air-filled robot to selectively control its expansion (left) and generate a wide range of shapes (right) for locomotion. Adapted with 
permission.[132] Copyright 2009, IEEE. b) Low-melting-point-alloy inclusions in a silicone matrix allowed reversible morphing and shape memory in 
arbitrary geometries. The images show how the “switchable stretchability” material could tune the trajectory of a single inflatable actuator. Reproduced 
with permission.[136] Copyright 2019, Wiley-VCH. c) Variable stiffness material embedded in a morphing limb was used for softening during shape 
change, and stiffening to hold either a flipper or leg shape in aquatic and terrestrial environments, respectively. Tortoise and flipper images on the 
right: Adapted with permission.[78] Copyright 2020, IOP Publishing. The turtle image is from Pixabay.
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many state-of-the-art robots have been shown to expand their 
capabilities by gaining new locomotion modes,[28,75] avoiding 
obstacles,[30] or transitioning between body shapes suitable 
for swimming or walking.[77,78] Increased closed-loop control 
of morphology and material properties could eventually allow 
robots to rival the dynamic plasticity attained by natural sys-
tems. However, many open questions remain regarding when, 
how, and to what degree shape change is useful.

The phenomenon of shape change overlaps with consid-
erations of adaptation at differing spatial and temporal scales. 
Spatially, for example, a rigid robot may experience local shape 
change at a joint, but none within the rigid segments from 
which it is comprised. In contrast, a soft robot may change 
its shape at all relevant length scales, globally and locally. 
Organisms[6] or robots[120] capable of physical developmental 
change may change their body plans slowly over their lifetimes, 
while faster, local deformations may occur at joints during 
specific behaviors. Consideration of how to seamlessly model 
and integrate such capabilities into the design of robots across 
length scales, while simultaneously balancing traditional design 
goals such as velocity, payload, and force output, remains a 
largely unsolved problem.

Much can be gained in future research by exploiting les-
sons of robustness from biology. A key component of biolog-
ical embedded control is its multiscale goal-seeking nature.[139] 
Functional swarms—for example, termite colonies that main-
tain a shared nest—are made of individual bodies that each 
build and repair to their particular target morphology. This is 
done by organs that maintain specific physiological and func-
tional specifications, and tissues which deform to maintain 
histological targets. These are, in turn, made of cells which opti-
mize various parameters as they migrate, proliferate, and differ-
entiate. Inside the cells are genetic and metabolic networks that 
also have degrees of memory, robustness, and homeostasis. 
The ability of each nested level to have its own local morpho-
genetic goals (in the cybernetic sense) contrasts with today’s 
robots, which are largely made of unintelligent parts, although 
some early examples of embedded distributed computation and 
soft logic gates are emerging.[140,141]

As demonstrated by this progress report, innovations in 
multifunctional materials, soft robotics, and evolutionary 
robotics are converging to make shape changing robots more 
viable. Such shape changing robots should be viewed as impor-
tant model systems for evolutionary biology and regenerative 
medicine,[10] providing simplified “bodies” in which to test theo-
ries of tissue computation, brain–body control, and regenerative 
algorithms, and in which to abstract the profound lessons of 
life-as-it-could-be from evolutionary contingencies.[33,34] Indeed, 
control of morphology is an unsolved problem in medicine—
from fixing birth defects to traumatic injury repair, aging, and 
cancer. Thus, the question of shape and its dynamic control is 
an emerging new science at the intersection of evolution, bio-
medicine, machine learning, and robotics.
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